首页 / 院系成果 / 成果详情页

Texture Image Classification Based on Deep Learning and Wireless Sensor Technology

  • 编号:
    65B6413A3D9089A34E9C395C47F07BC8
  • 作者:
    Chen, Fengping[1] Qi, Jianhua[1] Li, Xinquan[2]
  • 语种:
    英文
  • 期刊:
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE ISSN:1687-5265 2022 年 2022 卷 ; MAY 24
  • 收录:
  • 摘要:

    The main purpose of the object detection process is to determine the category of the scene object and use the display 3D and 3D frame size. At present, in the case of 3D object detection, we can extract more accurate features by learning a large number of data, and this deep learning network has good results, but there is a very big problem, including the error of input information, extraction error, and so on. Therefore, solving the above problems has become an important direction to promote the rapid development of 3D target detection technology. This paper mainly studies the deep learning wireless sensor technology and also studies the deep learning infrared and visible image fusion. At the same time, based on the introduction of wireless sensor technology and research status, this paper summarizes the existing algorithms. Texture image classification is a more important visual cue in life. Because it will be affected by light intensity, noise size, image scale, and so on. This makes the classification and feature extraction of image scale and texture image more difficult. To solve these problems has become a hot topic of computer vision research in recent years. The shape of the point cloud is completed by using the 3D target detection method to complete the algorithm research. The radar point cloud is extracted by the 3D target detection method, and the radar point group of the overall shape of the object is obtained. The principal component analysis algorithm is used to extract the principal features of the radar point cloud with the complete shape of the object, and the more accurate 3D target frame is obtained after feature adjustment.

  • 推荐引用方式
    GB/T 7714:
    Chen Fengping,Qi Jianhua,Li Xinquan, et al. Texture Image Classification Based on Deep Learning and Wireless Sensor Technology [J].COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022,2022.
  • APA:
    Chen Fengping,Qi Jianhua,Li Xinquan.(2022).Texture Image Classification Based on Deep Learning and Wireless Sensor Technology .COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022.
  • MLA:
    Chen Fengping, et al. "Texture Image Classification Based on Deep Learning and Wireless Sensor Technology" .COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022(2022).
  • 条目包含文件:
    文件类型:PDF,文件大小:
    正在加载全文
浏览次数:2 下载次数:0
浏览次数:2
下载次数:0
打印次数:0
浏览器支持: Google Chrome   火狐   360浏览器极速模式(8.0+极速模式) 
返回顶部